魏毅教授
魏毅,华裔美籍复合材料知名专家。1984, 1987四川大学高分子材料科学与工程系学士、硕士,1993加拿大滑铁卢大学化学工程博士,美国里海大学界面科学研究所博士后。长期任职于美国高科技跨国公司,2014年至今任东华大学民用航空复合材料中心特聘教授,纺织学院和材料学院博士生导师。美国化学会及先进复合材料学会会员,SAMPE上海分会副会长和陆上交通工具复合材料专业委员会主任。长期从事功能高分子及纤维增强复合材料的研究开发和工程化,研究方向涉及高性能复合材料树脂体系、可重复成型可回收固塑体材料、热固性复合材料增韧、纳米复合材料、复合材料界面及界面域等方面,并成功实现了一批高新技术产品的产业化,产品应用领域包括航空航天、轨道交通、船舶、新能源汽车、太阳能等。
研究方向:
1. 高性能功能复合材料树脂体系
2. 可重复成型可回收固塑体材料
3. 热固性树脂增韧及增韧机理
4. 先进复合材料界面及界面域
5. 先进复合材料树脂及预浸料制造工程
荣誉及获奖情况:
1. 上海市复合材料创新成就奖
2. 上海产学合作教育成果二等奖
3. 中国纺织工业联合会教学成果一等奖
4. 国家科技进步三等奖
近年来承担的主要科研项目:
1. 自动铺放用干纤维材料体系开发与增韧机理研究
2. T300碳纤维织物预浸料工艺优化
3. 多功能碳纤维表面处理技术及配套高性能上浆剂开发
4. 低温固化HJT导电银浆系列开发
5. 复兴号智能动车组碳纤维格栅研制
近年来发表的代表性论著、专利:
论文
1. Bio-Based and Solvent-Free Epoxy Vitrimers Based on Dynamic Imine Bonds with High Mechanical Performance,Polymers,2025, 17, 571
2. Toughening of Infusible Epoxy Resins by Core/Shell Nanoparticles Plus a Soluble Thermoplastic Polymer and Their Synergistic Mechanism at the Mesoscopic Morphological Level,ACS Applied Polymer Materials,Vol 7 Issue 5,2025
3. Quantitative Prediction of Polymer Dielectric Constants Using an Improved Mathematic Correlation Based on Molecular Polarity Components,Journal of Polymer Science, 2024, 0:1–13
4. Epoxy-imine vitrimer having low dielectric constant and high wave transmission efficiency for mobile communication applications, Polymer 2024, 313
5. The effect of different cyclic substituents on the properties of recyclable acetal-containing epoxy resins,Polymer,290,2024,126561
6. Composite Interlaminar Fracture Toughness Enhancement Using Electrospun PPO Fiber Veils Regulated by Functionalized CNTs. Polymers, 2023, 15, 3152
7. Hemiaminal dynamic covalent networks with rapid stress relaxation, reprocessability and degradability endowed by the synergy of disulfide and hemiaminal bonds,RSC Advances, 2023, 13, 28658-28665
8. A novel epoxy vitrimer with low dielectric constant at high-frequency, J Appl Polym Sci., 2023, 140:e53713
9. A vanillin-derived hardener for recyclable, degradable and self-healable high-performance epoxy vitrimers based on transimination,Materials Today Communications, Volume 35, 2023, 106178
10. Synthesis and structure-property relationship of epoxy vitrimers containing different acetal structures,Polymer,Volume 272, 2023, 125862
11. Optimizing mechanical and thermomechanical properties of the self‐healable and recyclable biobased epoxy thermosets,Journal of Polymer Research (2023) 30:70
12. Composite interlaminar fracture toughness imparted byelectrospun PPO veils and interleaf particles: a mechanistical comparison, Composite Structures,Volume 312, 2023, 116865
13. Developing Easy Processable, Recyclable, and Self-Healable Biobased Epoxy Resin through Dynamic Covalent Imine Bonds, ACS Applied Polymer Materials, 2023, 5, 1, 279–289, DOI: 10.1021/acsapm.2c01501
14. Hexachlorocyclotriphosphazene functionalized lignin as a sustainable and effective flame retardant for epoxy resins, Industrial Crops and Products, 187, Part B, 1, 2022, 115543
15. A novel bio-based, flame retardant and latent imidazole compound-Its synthesis and uses as curing agent for epoxy resins, Journal of Applied Polymer Science, 2022, 139(44)
16. A Quercetin-Derived Polybasic Acid Hardener for Reprocessable and Degradable Epoxy Resins Based on Transesterification, ACS Appl. Polym. Mater. 2022, 4, 8, 5708–5716
17. Synthesis of cyclotriphosphazene-containing imidazole as a thermally latent hardener for epoxy resins and its application in carbon fiber reinforced composites, Appl Polym Sci., 2022, 139 (41)
18. Review on intrinsically recyclable flame retardant thermosets enabled through covalent bonds, J Appl Polym Sci., 2022, 139 (27) e52493
19. Review of reversible dynamic bonds containing intrinsically flame retardant biomass thermosets, European Polymer Journal, 173 (2022) 111263
20. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds, Polymer-Plastics Technology and Materials, 2022, 61 (16) 1740-1782, DOI: 10.1080/25740881.2022.2080559
21. Formulating novel halogen-free synergistic flame retardant epoxy resins for vacuum assisted resin infusion composites, Journal of Donghua University (English Edition), 2022, 39(2): 120-127
22. Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites,Composites Part B, 2022, 234, 109749
23. A thermal latent imidazole complex containing copper (II) as the curing agent for an epoxy-based glass fiber composite. Textile Research Journal. 2022;92(11-12):1867-1875
24. Recyclable and reformable epoxy resins based on dynamic covalent bonds – Present, past, and future, Polymer Testing, 2021, 105-107420, doi.org/ 10.1016/j.polymertesting.2021.107420
25. Correlating the thermomechanical properties of a novel bio-based epoxy vitrimer with its crosslink density, Materials Today Communications, 2021, doi.org/10.1016/j.mtcomm.102814
26. Building Effective Core/Shell Polymer Nanoparticles for Epoxy Composite Toughening Based on Hansen Solubility Parameters, Nanotechnology Reviews, 2021, 10, 1183–96
27. Solar transparent radiators based on in-plane worm-like assemblies of metal nanoparticles, Solar Energy Materials And Solar Cells, 2021,219:110796
28. Tailoring Broad-Band-Absorbed Thermoplasmonic 1D Nanochains for Smart Windows with Adaptive Solar Modulation, ACS Applied Materials and Interfaces, 2021, 13(4)
29. 聚磷酸铵-三聚氰胺-三嗪成炭剂协同阻燃改性环氧树脂及玻璃纤维增强树脂复合材料, 复合材料学报,2021, 38(9): 2803-2813
30. Reprocessable, Reworkable, and Mechanochromic Polyhexahydrotriazine Thermoset with Multiple Stimulus Responsiveness, Polymers 2020, 12, 2375; doi:10.3390/polym12102375
31. Impressive epoxy toughening by a structure-engineered core/shell polymer nanoparticle, Composites Sci. and Tech., 2020, 199, 108364
32. Interlaminar Fracture Toughness of Carbon-Fiber-Reinforced Epoxy Composites Toughened by Poly(phenylene oxide) Particles, ACS Applied Polymer Materials, 2020, 2, 8, 3114–3121
33. A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites, Materials, 2020, 13(12):2765
34. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber-reinforced composites, Composites Sci. and Tech., 2020, 199, 108314
35. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability, Macromolecules, 2020, 53, 621-630
36. Welding and reprocessing of disulfide‐containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic, J. of Applied Polymer Sci., 2020, 10.1002, 49541
37. 不同尺度片状氮化硼改性环氧树脂复合材料性能研究,《航空制造技术》,2020-01
38. A novel liquid imidazole-copper (II) complex as a thermal latent curing agent for epoxy resins, Polymer, 2019, 178:121586.
39. The Failure Mechanism of Composite Stiffener Components Reinforced with 3D Woven Fabrics, Materials 2019, 12, 2221.
40. Hierarchical assembly of silver and gold nanoparticles in two-dimension: Toward fluorescence enhanced detection platforms, Applied Surface Science, 2019, 476, 1072-1078
41. A Comparative Study on Interlaminar Properties of L shaped Two Dimensional (2D) and Three Dimensional (3D) Woven Composites, Applied Composite Materials, 2019, 26:723-744.
42. Recyclable Carbon Fiber Reinforced Polyimine Resin Composites, SAMPE Joural, 2019, Jan/Feb Issue, 20-28.
43. Influence of graphene oxide with different oxidation levels on the properties of epoxy composites, Composite Sci. Technol., 2018, 161: 74-84.
44. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites., Molecules, 2018, 23: 547.
45. A one-component, fast-cure and economical epoxy resin system suitable for liquid molding of automotive composite parts, Materials, 2018, 11: 685.
46. Effects of graphene-oxide-modified coating on the properties of carbon-fiber-reinforced polypropylene composites, Coating, 2018, 8: 149.
47. Fast-curing halogen-free flame-retardant epoxy resins and their application in glass fiber-reinforced composites, Textile Research Journal, doi.org/10.1177/ 0040517518819840, 2018
48. A Comparative Study on Interlaminar Properties of L-shaped Two-Dimensional (2D) and Three-Dimensional (3D) Woven Composites, Applied Composite Materials, doi.org/10.1007/s1044, 2018.
49. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征,复合材料学报,2018,35,1691-1699.
50. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比,纺织学报, 2017, 38(9):66-71.
专利
1、 CN114853984B,一种共价键动态交换催化剂的应用以及一种可重复成型可降解回收的改性环氧树脂,2022
2、 CN113150501B,一种用于真空灌注成型的苯并噁嗪阻燃改性环氧树脂及制备方法,2021
3、 CN112920379B,环氧树脂单体及其中间体、制备方法、环氧树脂和回收方法,2021
4、 CN110734537B,一种潜伏性无卤阻燃型环氧树脂固化剂、环氧树脂预浸料及碳纤维复合材料,2020
5、 CN110386907B,一种含亚胺键的环氧树脂单体及其制备方法和应用,2019
6、 CN110272686B,一种低卤快速固化导电胶组合物及其制备方法,2019
7、 CN110003443B,一种可回收型环氧树脂及其制备和回收方法,2019
8、 CN108774310B,一种改性咪唑类环氧树脂潜伏型固化剂、制备方法及应用,2018
9、 CN108384191B,一种低粘度高耐热增韧环氧树脂组合物,2018
10、CN108384188B,一种基于工程塑料非织造布的预浸料及其应用,2018
主要学术兼职:
国际先进材料与制造工程学会/SAMPE上海分会副会长
联系电话:13601947468 E-MAIL:weiy@dhu .edu.cn