马红彩教授





马红彩,197211月出生。应用数学学科教授。近年来发表论文三十多篇。主要从事孤立子与可积系统方面的研究,讨论连续和离散偏微分方程的可积性及精确解,这些解在物理、力学、流体、等离子体、纺织等学科都有广泛应用。






研究方向:

孤立子与可积系统

1、非线性偏微分方程的精确解

2、可积系统及其数学结构

荣誉及获奖情况:

1、2007年宁波市科技进步一等奖

2、2009年获学生心目中的好老师称号

近年来承担的主要科研项目:

1、国家自然科学基金面上项目,11371086,复杂非线性系统的几个问题研究,55万,在研,主持。

2、国家自然科学基金理论物理专项基金项目,10647112,非线性系统的对称与精确解的研究,2万,结题,主持。

3、上海市科学基金项目,13ZR1400100 ,若干运算下图的代数表示与刻画,10万,结题,参与

近年来发表的代表性论著、专利:

论文

1、Ma H-C, Ni K, Ruan G and Deng A 2016 Rational solution to a shallow water wave-like equation Therm. Sci.20 875–80

2、Ma H-C, Ruan G, Ni K and Deng A 2016 Rational solutions to an Caudrey-Dodd-Gibbon-Sawada-Kotera-like equation Therm. Sci.20 871–4

3、Ma H-C and Deng A-P 2016 Lump Solution of (2+1)-Dimensional Boussinesq Equation Commun. Theor. Phys.65 546–52

4、Qin Z-Y, Ma W-X and Ma H-C 2012 Painlevé Integrability of Coupled Variable Coefficient Higher-Order Nonlinear Schrödinger Equations with Free Parameters Chin. Ann. Math. A33 229–36

5、Ma H-C, Yu Y-D and Ge D-J 2008 New exact traveling wave solutions for the modified form of Degasperis–Procesi equation Appl. Math. Comput.203 792–8

6、Ma H-C 2005 A Simple Method to Generate Lie Point Symmetry Groups of (3+1)-Dimensional Jimbo-Miwa Equation Chin. Phys. Lett.22 554–8

7、Ma H-C, Yao D-D and Peng X-F 2015 Exact solutions of non-linear fractional partial differential equations by fractional sub-equation method Therm. Sci.19 1239–44

8、Ma H-C, Peng X-F and Yao D-D 2015 Improved hyperbolic function method and exact solutions for variable coefficient Benjamin-Bona-Mahony-Burgers equation Therm. Sci.19 1183–7

9、Ma H-C, Deng A and Yu Y 2014 Lie Symmetry Group of (2+1)-dimensional Jaulent-Miodek Equation Therm. Sci.18 1547–52

10、Yu Y and Ma H-C 2010 Exact solutions of the combined KdV–Burgers equation with variable coefficients Appl. Math. Comput.215 3534–40

11、Ma H-C and Bai Y 2014 New Solutions of the Schwarz-Korteweg-de Vries Equation in 2+1 Dimensions with the Gauge Transformation Int. J. Nonlinear Sci.17 41–6

12、Ma H-C, Qin Z and Deng A-P 2013 Lie symmetry and Exact solution of (2+1)-dimensional generalized KP equation with variable coefficients Therm. Sci.17 1490–3

13、Ma H-C, Bai Y and Deng A 2013 Exact three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation Adv. Differ. Equations2013 321

14、Ma H-C and Bai Y-B 2013 Wronskian determinant solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation J. Appl. Math. Phys.1 18–24

15、Qin Z, Mu G and Ma H-C 2013 G’/G-expansion method for the fifth-order forms of KdV–Sawada–Kotera equation Appl. Math. Comput.222 29–33

16、Ma H-C and Lou S 2006 Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems Commun. Theor. Phys.46 1005–10

17、Ma H-C, Qin Z and Deng A 2013 Symmetry Transformation and New Exact Multiple Kink and Singular Kink Solutions for (2+1)-Dimensional Nonlinear Models Generated by the Jaulent-Miodek Hierarchy Commun. Theor. Phys.59 141–5

18、Lou S and Ma H-C 2005 Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method J. Phys. A. Math. Gen.38 L129–37

19、Ma H-C, Zhang Z-P and Deng A-P 2012 A New Periodic Solution to Jacobi Elliptic Functions of MKdV Equation and BBM Equation Acta. Math. Appl. Sin.28 409–15

20、Ge D-J, Ma H-C and Yu Y-D 2009 New Periodic Wave Solutions and Their Interaction for (2+1)-dimensional KdV Equation Chin. Quart. J. Math.24 525–36

21、Ma H-C, Zhang Y-L and Deng A-P 2008 Auxiliary Equation Method and New Exact Solutions of BKP Equation Quart. J. Math.23 159–64

22、Ma H-C 2002 Darboux Transformation and Soliton Solution J. Zhengzhou Univ.34 11–7

23、Ma H-C, Yu Y-D and Ge D-J 2009 New Exact Travelling Wave Solutions for Zakharov–Kuznetsov Equation Commun. Theor. Phys.51 609–12

24、Ma H-C and Deng A 2009 New Exact Complex Solutions for Third-order Isospectral AKNS and the MBBM Equations Int. J. Nonlinear Sci. Numer. Sim.10 215–9

25、Ma H-C and Lou S-Y 2005 Solutions Generated from the Symmetry Group of the (2+1)-Dimensional Sine-Gordon System Z. Naturforsch.60a 1–8

26、Ma H-C and Lou S-Y 2005 Finite Symmetry Transformation Groups and Exact Solutions of Lax Integrable Commun. Theor. Phys.44 193–6

27、Lou S Y and Ma H-C 2006 Finite symmetry transformation groups and exact solutions of Lax integrable systems Chaos, Solitons & Fractals30 804–21

28、Yu Y and Ma H-C 2010 Explicit solutions of (2+1)-dimensional nonlinear KP-BBM equation by using Exp-function method Appl. Math. Comput.217 1391–7

29、Ma H-C and Lou S 2005 Finite symmetry transformation groups and exact solutions of Lax integrable systems Chin. Phys.14 1495–500

30、Ma H-C 2005 Generating Lie point symmetry groups of (2+1)-dimensional Broer-Kaup equation via a simple direct method Commun. Theor. Phys.43 1047–52

31、Ma H-C, Ge D-J and Yu Y 2008 New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation Chin. Phys. B.17 4344–53

32、Ma H-C, Lou S and Deng A 2008 Lie symmetry groups of high dimensional non-integral nonlinear systems J. Phys. Conf. Ser.96 12166

33、Ma H-C, Deng A and Qin Z 2009 New Periodic Solution to Jacobi Elliptic Functions of a (2+1)-Dimensional BKP Equation and a Generalized Klein-Gordon Equation Chin. Phys. Lett.26 40201

34、Ma H-C, Wang Y and Qin Z 2009 New exact complex traveling wave solutions for (2+1)-dimensional BKP equation Appl. Math. Comput.208 564–8

35、Ma H-C, Lou S-Y and Deng A-P 2008 Lie Symmetry Groups of (2+1)-Dimensional BKP Equation and Its New Solutions Commun. Theor. Phys.50 685–8

36、Ma H-C, Deng A and Wang Y 2011 Exact solution of a KdV equation with variable coefficients Compu. Math. Appl.61 2278–80

37、Ma H-C, Yu Y-D and Ge D-J 2009 The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation Compu. Math. Appl.58 2523–7

国际交流与合作:

20142-20152,访问美国University of South Florida (南弗罗里达大学)

联系电话:02167792311                                                                  E-MAILhongcaima@dhu.edu.cn