甘学辉教授

2002年进入东华大学任教,2004年到日本作客座研究员1年,历任机械工程学院教师、院长助理,东华大学科研处副处长,科研教学平台联合党委书记。现有主持参与国家、省部级及产学研项目近20项,发表SCI、EI检索论文60余篇,申请和授权发明专利34项。


研究方向

1、 智能检测技术(激光多普勒测振、机器视觉与深度学习)

2、 纤维介质流体动力学建模与CFD技术




荣誉及获奖情况:

1、 “界面摩擦调控及超滑”获2022年上海市科学技术奖自然科学奖二等奖

2、 “全自动喷丝板微孔检测仪”获2010年纺织工业协会科技进步二等奖

近年来承担的主要科研项目:

1、 国家重点研发计划项目,2021YFB3701600,面向月球基地用仿月海玄武岩纤维研制与模块化装备构建-自动化上丝装置,80万元,2021.12-2025.11,在研,主持

2、 上海市军民融合项目,XX纤维生产线研发及产业化,50万元,2018.11-至今,在研,主持

3、 国家重点研发计划项目,2016YFB0302901,聚酯高效柔性化制备关键技术,2016.07-2020.12,90万元,已结题,主持

4、 横向课题,高性能碳纤维原丝的成形动力学研究,2020.9-2023.9,20万,在研,主持

5、 横向课题,非接触式聚酯FDY长丝的在线张力和结构检测系统构建,2019.12-2022.12,196万,已结题,主持

近年来发表的代表性论著、专利:

论文

[1] Time-delayed feedback bistable stochastic resonance system and its application in the estimation of the polyester filament yarn tension in the spinning process. Chaos, Solitons and Fractals. 2023, 168, 113133.(1)

[2] Diffusion-convection model for interphase formation and process simulation of bicomponent fiber[J]. Journal of Manufacturing Processes, 2023, 91: 89-98. (2)

[3] Real-time tension estimation in the spinning process based on the natural frequencies extraction of the Polyester Filament Yarn[J]. Measurement, 2022, 188: 110514. (2)

[4] Evolution of interfacial formation and configuration control of bicomponent fiber during full spinning process [J]. Textile Research Journal, 2022, 93: 3-4. (3)

[5] Non-contact detection of polyester filament yarn tension in the spinning process by the laser Doppler vibrometer method[J]. 

Textile Research Journal, 2021: 92(5): 919-928. (3)

[6] Ma Q*, Dong F, Gan X*, Zhou T. Effects of different interface conditions on energy absorption characteristics of Al/carbon fiber reinforced polymer hybrid structures for multiple loading conditions[J]. Polymer Composites, 2021. (IF=2.877, 3)

[7] Ma Q*, Sun J, Gan X*, Sun Z. Experiment and modified model for CFRP/steel hybrid tubes under the quasi-static transverse loading[J]. International Journal of Crashworthiness, 2021, 26(3): 343-353. (IF=2.157, 4)

[8] Ma Q*, Wang K, Gan X*, Tian Y. Optimization design in perforated AL-CFRP hybrid tubes under axial quasi-static loading[J]. International Journal of Crashworthiness, 2021(4):1-20. (IF=2.157, 4)

[9] Wang S, Ma Q*, Gan X*, Zhou T. Crashworthiness analysis and multi-objective optimization of Al/CFRP tubes with induced holes[J]. Polymer Composites, 2021, 42(10): 5280-5299. (IF=2.877, 3)

[10] Bai C, Ma Q*, Gan X*, Zhou T. Theoretical prediction model of mean crushing force of CFRP-Al hybrid circular tubes under axial compression[J]. Polymer Composites, 2021, 42(10): 5035-5050. (IF=2.877, 3)

[11] Dong F, Ma Q*, Gan X*, Zhou T. Crashworthiness analysis of perforated metal/composite thin-walled structures under axial and oblique loading[J]. Polymer Composites, 2021, 42(4): 2019-2036. (IF=2.877, 3)

[12] Zha Y, Ma Q*, Gan X*, Cai M, Zhou T. Deformation and energy absorption characters of Al-CFRP hybrid tubes under quasi-static radial compression[J]. Polymer Composites, 2020, 41(11): 4602-4618. (IF=2.877, 3)

[13] Ma Q*, Zha Y, Dong B, Gan X*. Structure design and multiobjective optimization of CFRP/aluminum hybrid crash box[J]. Polymer Composites, 2020, 41(10): 4202-4220. (IF=2.877, 3)

[14] Ma Q, Zhang D, Gan X*. Simulation of the flow field and the chemical reaction coupling of selective catalytic reduction (SCR) system using an orthogonal experiment[J]. Plos one, 2019, 14(7): e0216138. (IF=3.788, 3)

[15] Shi B, Gan X, Zhang C, et al. Investigating the effect of nanoscale triboelectrification on nanofriction in insulators[J]. Nano Energy, 2022, 91: 106620. (IF=17.631, 1)

[16] Ma Q, Wang S, Zhou Q, et al. Parallel optimization of design and manufacture for carbon fiber reinforced plastic oil pan based on the thickness distribution[J]. Polymer Composites, 2021. (IF=2.877, 3)

[17] Shi B, Gan X, Lang H, et al. Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding[J]. Nanoscale, 2021, 13(40): 16860-16871. (IF=7.632, 2)

[18] Wu Z, Chen Z, Chen G, et al. An Improvement of Probabilistic Feasible Region Method for Reliability-Based Design Optimization[J]. International Journal of Computational Methods, 2021, 18(06): 2140004. (IF=1.861, 4)

[19] Wu Z, Chen Z, Chen G, et al. A probability feasible region enhanced important boundary sampling method for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2021, 63(1): 341-355. (IF=4.715, 2)

[20] Wang Y, Chen G, Li W, et al. Reflectance model for filament yarn composed of different color monofilaments[J]. The Journal of the Textile Institute, 2021, 112(12): 2039-2047. (IF=2.028, 3)

[21] Cao X, Gan X, Lang H, et al. Impact of the Surface and Microstructure on the Lubricative Properties of MoS2 Aging under Different Environments[J]. Langmuir, 2021, 37(9): 2928-2941. (IF=3.908, 2)

[22] Zhaolin LIU, Yang Y, Yuwen W, et al. Preparation and Properties of Opaque Polyethylene Terephthalate/TiO2 Filaments[J]. Materials Science, 2021, 27(3): 325-329. (IF=0.665, 4)

专利

1、 一种基于激光测振的化纤长丝张力在线检测方法及装置, 2021-8-24, 中国, ZL20201032616.5.

2、 一种喷丝板残留杂质光电检测清洗平台, 2019-12-31, 中国, ZL201911413044.6.

3、 一种低阻尼聚酯负压熔融纺丝成形方法, 2018-10-23, 中国,ZL201611004381.6.

4、 一种高强度纤维正压熔融纺丝成形方法, 2018-10-23, 中国,ZL201611004297.4.

主要学术兼职:

1、 中国纺织工程学会纺织机械器材专业委员会化纤机械学组副组长

2、 上海市、中国纺织协会科技奖励评审专家

联系电话:021-67792132           E-MAILxuehuig@dhu.edu.cn